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Abstract 
The first examples of a pentacarbonylzirconium complex, [Zr(CO)5(SnMe3)2] 2- and an arylphosphine substituted zirconium(0) 

species, [Zr(CO)4(dppe)SnMe3]- were obtained by the reaction of [Zr('04-naphthalene)3] 2- with MeaSnC1 followed by carbonylation in 
the absence or presence of dppe, respectively. Both compounds were structurally characterized and represent the initial organotin 
derivatives of Zr(0). Solutions of [Zr(CO)5(SnMe3)2] 2- decompose within hours in CH3CN at 20°C to provide an especially robust 
formally divalent zirconium complex, [Zr(CO)4(SnMe3)4] 2- containing eight coordinate zirconium. The latter has been unambiguously 
characterized by IR, ~3C and tlgsn NMR spectra. 
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Although numerous zerovalent titanium carbonyls 
are now known [1], the situation for corresponding 
carbonyls of zirconium is far less satisfactory [2]. Since 
the first report on a formally Zr(0) carbonyl, 
Zr(butadiene)2(dmpe)CO, dmpe = Me2PCH2CH2PMe 2, 
[3] only three other classes of zerovalent zirconium 
carbonyls have been described, including Zr('r/6-1,3,5 - 
tri-t-butylbenzene)2CO, [4] [Zr(CO)4(r/5-CsRs)] -,  for 
R = H ,  Me, [5] and M(CO)4('r/3-L), for L =  1,1,1- 
tris(dimethylphosphinomethyl)ethane or trmpe [6] and 
1,4,7-triazacyclononanes [7]. Among these compounds 
only Zr(CO)4(trmpe) has been structurally characterized 
[8]. For these reasons we are prompted to report on the 
syntheses of two new types of Zr(0) carbonyls including 
the first pentacarbonylzirconium species, [Zr(CO)s(Sn- 
Me3)2] 2-, and an arylphosphine substituted Zr(0) com- 
plex, [Zr(CO)4(dppe)SnMe3]-, where dppe = Ph 2- 
PCH2CH2PPh 2. Both of these complexes have been 
structurally characterized and also represent the first 
examples of organotin stabilized zerovalent zirconium 
carbonyls. Also, [Zr(CO)5(SnMe3)2] 2- may be consid- 
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ered to be the first derivative of the presently unknown 
[ Z l ~ ( C O ) 5 1 4 -  [8a]. 

Treatment of the recently reported tris(7/a-naph - 
thalene)zirconate(2-), [8b] at - 6 0 ° C  in THF (tetrahy- 
drofuran) with one equivalent of Me3SnCI, followed by 
carbonylation at atmospheric pressure from - 60 to 20°C 
over a period of 16 h (Eq. (1)), provided a 70% yield 
(based on Sn) of deep red, microcrystalline and satisfac- 
torily pure [K(15-Crown-5)2]2[Zr(CO)s(SnMe3)2], (1), 
following filtration, removal of most THF and crystal- 
lization by addition of ethyl ether. Spectral data for (1), 
IR(v(CO) in THF): 1934 (m), 1839 (s), 1801 (s) cm-I ;  
13 13 119 C NMR (8 CO in THF-ds); 277.6 s, ppm. Sn 

119 13 
NMR (6 SnMe 3 in THF-d s for 99% CO enriched 
product, 20°C): 16.4 (sextet, 2j(ll9Sn-13C = 49 Hz). 
When [Zr(Cl0Hs)3] 2- was allowed to react with 
Me3SnC1 and then carbonylated under the same condi- 
tions in the presence of one equivalent of dppe, a 
difficult to separate mixture of (1) and the new sub- 
stance [K(15-Crown-5)2][Zr(CO)4(dppe)SnMe3] , (2), 

[K(I 5-Crown-5)2]2[Zr(C t0H s)3] 

(1)Me3SnCt. -60°C , [K(15_Crown_5)2h[Zr(CO)s(SnMe3)2]+ 
(2) CO, - 60°C to + 20°C 

(1), 70%based on Sn 

(1) 
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were formed in roughly equal amounts. The nature of 
the initial product(s) arising from the reaction of 
[Zr(Cl0Hs)3 ]2- and Me3SnC1 is still under investiga- 
tion but may be related to recently reported trimethyl- 
stannyl derivatives of bis(naphthalene)titanium(0), e.g., 
[Ti(C10Hs)2(SnMe3)2] 2- [9]. Deep red brown and satis- 
factorily pure (2) was subsequently obtained from the 
reaction of [K(15-Crown-5)2]2[Zr(CO) 6] [8] with 
Me3SnC1 at -78°C in THF, followed by the addition of 
one equivalent of dppe (Eq. (2)). After filtration and 
removal of most of the THF, the product was isolated in 
18% yield following crystallization from THF-diethyl 
ether. Compound (2) had an infrared spectrum in the 
v(CO) region consisting of two absorptions at 1916 
(m), 1793 (s) cm-i  in THF. The positions and relative 
intensities of these bands are very similar to those 
previously reported for [CsHsZr(CO)4]- [5]. When the 
same reaction was carried 

[K(15-Crown-5) 2] 2 [Zr( CO)6] 
(1) Me~SnC1, - 78°C 

, [K( 15-Crown-5)2] 
(2) dppe, - 78°C - + 20°C 

× [Zr(CO)4 (dppe)SnMe3] + 

(2), 18% 

(2) 
out in the absence of dppe, only noncarbonyl decompo- 
sition products were obtained. In contrast, the analogous 
reaction of [Ti(CO)6] z- with Me3SnC1 was recently 
shown to provide high yields of [Ti(CO) 6 SnMe 3 ]- [ 10]. 
For this reason it seems likely that a corresponding, but 
very unstable zirconium complex forms initially in the 
reaction of [Zr(CO)6] 2- with Me3SnC1, but attempts to 
observe this species have been so far unsuccessful. This 
putative [Zr(CO)6SnMe3]- may also be trapped in low 
(5%) yield as pure (1) from THF by the sequence 
shown in Eq. (3). 

[K(15-Crown-5) 2] 2 [Zr(CO)6] 

(1) Me3SnCI, - 60°C 
, (1) + decomp. (3) 

(2) Me3SnK, - 60°C 
~5% 

When (1) was stirred in acetonitrile at 20°C for 3 h, 
the infrared spectrum of the solution in the v(CO) 
region changed from the three band pattern characteris- 
tic of (1), vide supra, to a strong intense single band at 
1857 cm -1 due to a new compound. Following filtra- 
tion and crystallization from CH3CN-Et20, satisfacto- 
rily pure dark red, microcrystalline [K(15-Crown- 
5)2]2[Zr(fO)4(SnMe3)4], (3), was isolated in 22% yield. 
Compound (3) was also obtained in 21% yield from the 
reaction of (1) with two equiv, of Me3SnC1 as shown in 
Eq. (4). However, no information on possible intermedi- 
ates or optimal amounts of Me3SnC1 are yet available 

for this interesting conversion of (1) to the formally 
divalent zirconium complex (3). Compound (3) is 

(1 )  + M e 3 S n C i  

THF, 20°C, [ K ( 1 5 _ C r o w n _ 5 ) 2 ] 2 [ Z r ( C O ) 4 ( S n M e 3 ) 4 ]  + (4) 
16h 

(3),21% 

closely related to the extremely robust and structurally 
characterized eight coordinate complex, [Zr(CO)4(Sn- 
Ph3)4] 2-, which has a highly symmetric dodecahedral 
coordination environment about zirconium [11]. The 
latter species has an infrared spectrum in the v(CO) 
region also consisting of one band (at 1880 cm-1), 
which is similar in shape and intensity to that of (3), 
strongly suggesting that both anions have similar molec- 
ular structures. To confirm this formulation, NMR spec- 
tra of 99% 13CO enriched (3) were obtained at 20°C in 
THF-d 8. The 13CO carbonyl resonance at 6 =  244.9 
ppm consisted of an approximate 1 : 3 : 1 triplet, .](13C- 
117,119 S n )  = 8 9  H z ,  which is the expected pattern for the 
three most intense peaks when four equivalent tin groups 
couple to J3CO [11], while the lZgsn NMR spectra 
consisted of a binomial pentet at 6 = 49.5 ppm with 
J(J3C-1195n) = 92 Hz. These spectra are consistent with 
the presence of a fluxional eight coordinate complex in 
which four equivalent Me3Sn groups are coupled to 
four equivalent CO groups and are very similar to those 
previously reported for [Zr(fO)a(SnPh 3)4 ]2- [ 11 ]. 

Single crystal X-ray studies on (1) and (2) were 
carried out to corroborate our formulations and provide 
structural data for these new compounds [12]. Fig. 1 
shows the molecular structure of [Zr(CO)5(SnMe3) 2 ]2-, 
which is approximately capped trigonal prismatic about 
zirconium, with Sn(2) as the capping atom. Mean Zr-C 
and C-O distances in (1) are 2.18(3) and 1.17(3) ,~, 
respectively, which are close to corresponding distances 
of 2.17(3) and 1.16(3) ,~ observed in Zr(CO)4(trmpe), 
the only previous structurally characterized Zr(0) car- 
bonyl [6]. The mean Zr-Sn distance of 3.012(3) ,~ in (1) 
is significoantly shorter than the corresponding value of 
3.086(1) A in the very crowded [Zr(fO)4(ZnPh3)4] 2- 
[11]. Fig. 2 depicts the X-ray structure of [Zr(CO) 4- 
(dppe)SnM%]-, which bears a strong resemblance to 
that of Zr(CO)a(trmpe) [6]. For example, the Zr(CO) 4 
units in both complexes are virtually identical, with 
respect to mean interatomic Zr-C and C-O distances 
and cis-Zr(CO) 2 and trans-Zr(CO) 2 angles, which are 
2.16(3) A, 1.16(3) ,~, 70(1) ° and 108(1) °, respectively in 
(2) and 2.17(3) ,~, 1.16(3) ,~, 70.7(5) ° and 109.7(5) °, 
respectively for the trmpe complex. The Zr-Sn distance 
of 3.061(2) A in (2) is significantly longer than that in 
(1) but shorter than the corresponding value observed in 
[Zr(CO)n(SnPh3)4] 2-, while the mean Zr-P distance of 
2.781(2) A is in the range of Zr-P distances observed 
previously in zirconium phosphine complexes. Fryzuk 
has pointed out that Zr -P  distances in these complexes 
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Fig. 1. Molecular structure of [Zr(CO)s(SnMe3)2] 2-, 50% probabil- 
ity thermal ellipsoids. Selected bond distances (,~) and angles (°): 
Zr-Sn(1) 3.011(3), Zr-Sn(2) 3.013(3), Zr-C(1) 2.21(2), Zr-C(2) 
2.17(2), Zr-C(3) 2.18(2), Zr-C(4), 2.15(2), Zr-C(5) 2.20(3), C(1)- 
O(1) 1.16(2), C(2)-O(2) 1.20(2), C(3)-O(3) 1.17(2), C(4)-O(4) 
1.18(2), C(5)-O(5) 1.15(3), Sn(1)-Zr-Sn(2) 80.73(7), Zr-C(1)-O(1) 
179(2), Zr-C(2)-O(2) 175(2), Zr-C(3)-O(3) 178(1), Zr-C(4)-O(4) 
171(2), Zr-C(5)-O(5) 178(2). 

slightly shorter than the mean Rb-O distance of 3.02(4) 
reported for the rubidium sandwich [14]. In our chem- 
istry [9,15] and especially that of Tinkham and Dye, 
[16] [K(15-Crown-5)2] + has often been found to be a 
relatively inexpensive but effective substitute for 
[K(cryptand 2.2.2)] + in the isolation and stabilization of 
highly reactive anions. 

Further investigations of the properties and reactivity 
patterns of these compounds and extensions of this 
research to hafnium are in progress. 
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